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Abstract Kirchhoff–Love plate theory is widely used in structural engineering. In this paper, efficient and accurate
numerical algorithms are developed to solve a generalized Kirchhoff–Love plate model subject to three common
physical boundary conditions: (i) clamped; (ii) simply supported; and (iii) free. The generalization stems from the
inclusion of additional physics to the classical Kirchhoff–Love model that accounts for bending only. We solve
the model equation by discretizing the spatial derivatives using second-order finite-difference schemes, and then
advancing the semi-discrete problem in time with either an explicit predictor–corrector or an implicit Newmark-
Beta time-stepping algorithm. Stability analysis is conducted for the schemes, and the results are used to determine
stable time steps in practice. A series of carefully chosen test problems are solved to demonstrate the properties and
applications of our numerical approaches. The numerical results confirm the stability and 2nd-order accuracy of
the algorithms and are also comparable with experiments for similar thin plates. As an application, we illustrate a
strategy to identify the natural frequencies of a plate using our numerical methods in conjunction with a fast Fourier
transformation power spectrum analysis of the computed data. Then we take advantage of one of the computed
natural frequencies to simulate the interesting physical phenomena known as resonance and beat for a generalized
Kirchhoff–Love plate.
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1 Introduction

Thin-walled elastic solids, often referred to as plates or shells, are ubiquitous in engineerings and applied sci-
ences. Examples of plates or shells can be found in many common mechanical and biological structures such as
dome-shaped stadium rooftops, airplane fuselages, vessel walls, and aortic valves. Adequately understanding the
intrinsic properties of plates (shells) is crucial for the various applications involving these structures. Therefore, the
investigation of mathematically modeling plate-like structures and the subsequent development of techniques for
their solutions have long been active areas of research. The difference between a plate and a shell lies in its precast
stress-free shape, which is flat for a plate and curved for a shell. This paper aims to develop accurate and efficient
numerical approximations for a generalized Kirchhoff–Love model. Here, the generalization means incorporating
additional important physics, such as linear restoration, tension, and visco-elasticity into the classic Kirchhoff–Love
model for isotropic and homogeneous thin plates; this is not to be confused with the generalized continuum theories
studied in [1,2]. Note that the linear restoring force added into the model is also known for engineering community
as the so-called Winkler foundation [3,4].

To study plate structures analytically, numerous theories have been developed over the years aiming at predicting
the various key physical characteristics; see [5–9] and the references therein. The classical Kirchhoff–Love plate
theory [7] was developed way back in 1888 under the assumptions that the thickness of the plate remains fixed
and any straight lines normal to the reference surface remain straight and normal to the reference surface after
deformation. This theory captures the bending dynamics of a plate in response to a transverse load and determines
the propagation of waves in the plate. As an extension to the Kirchhoff–Love model, the Reissner–Mindlin theory
takes a first-order shear deformation into account and no longer assumes that straight lines normal to the reference
surface remain normal during a deformation [10]. As is reviewed in [5], there are also many other plate theories
that are able to describe more sophisticated nonlinear physical phenomena, which make them viable choices for
modeling complicated engineering applications. For example, the Koiter shell theory [11] and its recent variant that
incorporates visco-elasticity [12] are often used as simplified models for artery walls in biomedical engineering.

These plate theories are in general derived by utilizing the disparity in the length scales of the thin structures
and significantly reduce the complexity of the three-dimensional (3D) continuum mechanics problem to a two-
dimensional (2D) one. The governing equations of a plate theory typically deal with variables defined only on a
reference surface that resides on a 2D domain; for an isotropic and homogeneous plate, its middle (or center) surface
is used as reference. See Fig. 1 for a schematic illustration of a 3D thin plate and its 2D reference surface. Physical
assumptions of the underlining plate theories also provide means of calculating the load-carrying and deflection
characteristics of the original thin-walled structures, and therefore, the complete deformation and stress fields of a
3D thin structure can be inferred from the solution of its reference surface. It is generally expected that the thinner
the structure, the more accurate the plate theory [13].

From both the analytical and numerical points of view, 2D plate theories are immensely more tractable than
3D solid mechanical models. The plate theories are especially appealing to researchers exploring multi-physical
problems, such as fluid–structure interaction (FSI) problems involving thin-walled elastic structures [12,14,15],
whereby multiple physical subproblems are dealt with simultaneously. Although greatly simplified from the full 3D
continuum mechanics problem, governing equations for plates are still too complicated to be solved analytically,
except for a limited number of cases with simple specifications [16]. Efficient and accurate numerical approximations
for the solutions are, therefore, of greater interest in practice. However, due to numerical challenges posed by the

Fig. 1 Cartoon illustration
of a deformed thin plate and
its reference surface

reference surface
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high-order spatial derivatives that are associated with the bending effect of plates, the development of stable and
accurate numerical methods for solving plate equations is non-trivial.

Many numerical approaches have been developed for solving various plate models based on common spatial
discretization methods such as finite difference [17,18], finite element (FEM) [19–27], and boundary element (BEM)
[28], to name just a few. Isogeometric analysis (IGA) and its variations (e.g., isogeometric collocation or Galerkin)
are nowadays well developed and widely used for problems with higher-order derivatives such as various plate
and shell models; see for example [29–33]. Regarding Reissner–Mindlin models, designing numerical methods for
shells is much more complicated [29] than plates, while for Reissner–Mindlin plates one of the primary concerns for
developing IGA or FEM methods is to overcome the shear-locking and membrane-locking phenomena [30,33,34].

Dynamic (time-dependent) plate models are typically solved using method-of-lines approach. After spatially
discretized using the aforementioned discretization methods, the plate equations become a system of second-order
ODEs. To integrate the ODE system in time, several time-stepping algorithms (temporal discretization) that are
suitable for the semi-discrete plate equations are often used. In particular, the second-order ODEs can be solved
explicitly using the second-order centered time difference scheme [20], implicitly using Crank-Nicholson type of
schemes [20], or the modified equation time-stepping approach that is related to the Numerov and Stoermer methods
for achieving higher-order accuracy [35,36]. More commonly, the equations can be reformulated as a first-order
system and then advanced with Runge–Kutta methods [37] or Newmark-Beta schemes [38].

For our proposed numerical methods, the generalized Kirchhoff–Love plate equation is spatially discretized with
a standard second-order accurate finite-difference method and integrated in time using either an explicit predictor–
corrector or an implicit time-stepping scheme. Stability analysis is performed, and the results are utilized to determine
stable time steps for the proposed numerical schemes. Stable and accurate numerical boundary conditions are
also investigated for the most common physical boundary conditions (i.e., clamped, simply supported, and free).
Carefully designed test problems are solved using all the proposed schemes for numerical validations. Interesting
applications using the numerical methods are also discussed. It is important to point out that the presence of the
biharmonic operator in the Kirchhoff–Love plate model poses a big numerical challenge for finite-element-based
methods because finite elements of class C1 are needed for its approximation and C1 elements are difficult to
construct in multi-dimensions. Non-conforming methods such as Morley elements [39–41], or the mixed finite
element method [42] can be used to avoid this issue. In contrast, our proposed algorithms directly discretize the
strong form of the Kirchhoff–Love model using standard finite difference methods without any PDE reformulation.
This approach offers great convenience in implementation and can be easily adapted for engineering applications
with more complex geometrical configurations.

The remainder of the paper is organized as follows. In Sect. 2, we present the governing equation and its boundary
conditions for a generalized Kirchhoff–Love model. The numerical algorithms for solving the model equation are
discussed in Sect. 3. We analyze the stability of the numerical schemes and lay out a strategy for determining stable
time steps for the algorithms in Sect. 4. Numerical results that provide verification of the stability and accuracy of
the schemes, as well as cross-validation with experiments, are presented in Sect. 5. Finally, concluding remarks are
made in Sect. 6.

2 Governing equations

The classical Kirchhoff–Love plate model concerns the small deflection of thin plates that is used as a simplified
theory of solid mechanics to determine the stresses and deformations in the plates subject to external forcings. The
governing equation for an isotropic and homogeneous plate is a single time-dependent biharmonic partial differential
equation (PDE) for the transverse displacement of the plate’s middle surface. It is derived by balancing the external
loads with the internal bending force that tends to restore the plate to its stress-free state. In this paper, we consider
a plate model that is generalized from the classical Kirchhoff–Love equation by including additional terms to
account for more physical effects, such as linear restoration, tension, and visco-elasticity. This generalized equation
originates in simplified models for human arterial walls [12,43] and is also used to model the outer visco-elastic
thin layer in the more sophisticated multi-layer artery models pioneered in [44,45].
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To be specific, this work concerns developing numerical algorithms for solving the following generalized
Kirchhoff–Love model for an isotropic and homogeneous plate with constant thickness h,

ρh
∂2w

∂t2 = −K0w + T ∇2w − D∇4w − K1
∂w

∂t
+ T1∇2 ∂w

∂t
+ F(x, t), (1)

where w(x, t) with x ∈ Ω ⊂ R
2 is the transverse displacement of the middle surface subject to some given body

force F . Here, ρ denotes density, K0 is the linear stiffness coefficient that acts as a linear restoring force, T is the
tension coefficient, and D = Eh3/(12(1 − ν2)) represents the flexural rigidity with ν and E being the Poisson’s
ratio and Young’s modulus, respectively. The term with coefficient K1 is a linear damping term, while the term with
coefficient T1 is a visco-elastic damping term that tends to smooth high-frequency oscillations in space.

On the boundary, one of the following physical boundary conditions is imposed; namely, for x ∈ ∂Ω , we have

clamped: w = 0,
∂w

∂n
= 0; (2)

supported: w = 0,
∂2w

∂n2 + ν
∂2w

∂t2
= 0; (3)

free:
∂2w

∂n2 + ν
∂2w

∂t2
= 0,

∂

∂n

[
∂2w

∂n2 + (2 − ν)
∂2w

∂t2

]
= 0, (4)

where ∂/∂n and ∂/∂t are the normal and tangential derivatives defined on the boundary of the domain. It is important
to point out that, for a rectangular plate, the free boundary conditions (4) must be complemented by a corner condition
that imposes zero forcing [17]; in other words, we also impose ∂2w/∂x∂y = 0 at the corners of a rectangular plate.
Note that for notational brevity, the functional dependence on (x, t) has been suppressed in the statement of the
boundary conditions.

Appropriate initial conditions need to be specified to complete the statement of the governing equations. Specif-
ically, we assign

w(x, 0) = w0(x) and
∂w

∂t
(x, 0) = v0(x) (5)

as the initial conditions with w0(x) and v0(x) representing two given functions that prescribe the plate’s initial
displacement and velocity.

3 Numerical methods

In this section, we present the numerical approaches to solve the governing equation (1) subject to the boundary con-
ditions (2)–(4). Standard-centered finite-difference methods of second-order accuracy are used for the discretization
of all the spatial derivatives, and then the resulted semi-discrete equations are integrated in time using an appropriate
time-stepping scheme.

Let Ωh denote a mesh covering the domain Ω , and let xi ∈ Ωh denote the coordinates of a grid point with multi-
index i = (i1, i2). The time-dependent grid function that approximates the displacement on the mesh is given by
wi(t) ≈ w(xi, t). Similarly, Fi is used to denote the given forcing function evaluated at xi; namely, Fi(t) = F(xi, t).
We spatially discretize the governing equation and its boundary conditions by replacing the differential operators
with the corresponding finite-difference operators (distinguished with a subscript h) to derive the semi-discrete
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equations,

ρh
d2wi

dt2 = −K0wi + T ∇2
hwi − D∇4

hwi − K1
dwi

dt
+ T1∇2

h
dwi

dt
+ Fi, ∀xi ∈ Ωh, (6)

as well as the following discrete boundary conditions. For ∀xib ∈ ∂Ωh , the numerical boundary conditions are given
by

clamped: wib = 0,
∂hwib

∂hn
= 0; (7)

supported: wib = 0,
∂2

hwib

∂hn2 + ν
∂2

hwib

∂ht2
= 0; (8)

free:
∂2

hwib

∂hn2 + ν
∂2

hwib

∂ht2
= 0,

∂h

∂hn

[
∂2

hwib

∂hn2 + (2 − ν)
∂2

hwib

∂ht2

]
= 0. (9)

Remark Two layers of ghost points on each side of the physical boundaries are included to aid the discretization
of the above boundary conditions so that standard centered finite-difference formulas can be used to approximate
all the derivatives in (7)–(9).

For numerical purposes, we rewrite (6) into a system of first-order ODEs. If we denote vi and ai the numerical
approximations of the velocity and acceleration at grid point xi, equation (6) can, thus, be conveniently written as
follows:

dwi

dt
(t) = vi(t), (10)

dvi

dt
(t) = ai(t), (11)

ρhai(t) = −Khwi(t) − Bhvi(t) + Fi(t), (12)

where the operators for the internal forces Kh and the damping forces Bh are introduced below to simplify the
notations:

Kh = K0 − T ∇2
h + D∇4

h and Bh = K1 − T1∇2
h . (13)

In this paper, two time-stepping methods are considered to advance the ODE system in time. In particular, one
of the methods is an explicit predictor–corrector scheme that consists of a second-order Adams–Bashforth (AB2)
predictor and a second-order Adams–Moulton (AM2) corrector, while the other one is an implicit Newmark-Beta
scheme of second-order accuracy [38]. We refer to the former scheme as PC22 scheme and the latter one as NB2
scheme for short.

To simplify the discussion, the algorithms are developed for a fixed time-step Δt so that tn = nΔt . Let the
numerical solutions of (10)–(12) at time tn be wn

i ≈ wi(tn), vn
i ≈ vi(tn), and an

i ≈ ai(tn), and denote Fn
i = F(xi, tn).

The goal of a time-stepping algorithm is to determine the solutions at a new time given solutions at previous time
levels.

First, we describe the PC22 scheme in Algorithm 1.
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Algorithm 1 PC22 time-stepping scheme

Input: solutions at two previous time levels; i.e., (wn
i , v

n
i , an

i ) and (wn−1
i , vn−1

i , an−1
i )

Output: solutions at the new time level; i.e., (wn+1
i , vn+1

i , an+1
i )

Procedures:
Stage I: predict solutions using a second-order Adams–Bashforth (AB2) predictor

∀xi ∈ Ωh :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w
p
i = wn

i + Δt
(

3
2vn

i − 1
2vn−1

i

)
v

p
i = vn

i + Δt
(

3
2 an

i − 1
2 an−1

i

)
a p
i = 1

ρh

(
−Khw

p
i − Bhv

p
i + Fn+1

i

)

Stage II: correct solutions using a second-order Adams–Moulton (AM2) corrector

∀xi ∈ Ωh :

⎧⎪⎪⎨
⎪⎪⎩

wn+1
i = wn

i + Δt
( 1

2vn
i + 1

2v
p
i

)
vn+1
i = vn

i + Δt
( 1

2 an
i + 1

2 a p
i

)
an+1
i = 1

ρh

(
−Khwn+1

i − Bhvn+1
i + Fn+1

i

)

Remark:Boundary conditions are applied after both the predictor and corrector stages to fill in the solutions at
ghost and/or boundary grid points. Note that numerical boundary conditions for v and a are derived from those
for w by taking the appropriate time derivatives of (7)–(9).

Second, we consider the Newmark-Beta scheme for solving our problem (10)–(12). The so-called Newmark-
Beta scheme is a general procedure proposed by Newmark for the solution of problems in structural dynamics [38].
Given acceleration, the scheme updates the velocity and displacement by solving

⎧⎨
⎩

wn+1
i = wn

i + Δtvn
i + Δt2

2

[
(1 − 2β)an

i + 2βan+1
i

]
,

vn+1
i = vn

i + Δt
[
(1 − γ )an

i + γ an+1
i

]
,

(14)

where the acceleration in our case is given by

ρhan+1
i = −Khwn+1

i − Bhvn+1
i + Fn+1

i . (15)

We note that the scheme is unconditionally stable if 1/2 ≤ γ ≤ 2β, whereas it is conditionally stable if γ >

max{1/2, 2β}.
Instead of solving the above implicit system for wn+1

i , vn+1
i , and an+1

i all at the same time, we use (14) to
eliminate wn+1

i and vn+1
i in (15) and then solve a smaller system for an+1

i only. The complete algorithm for this
scheme is summarized in Algorithm 2.
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Algorithm 2 NB2 time-stepping scheme
Input: solutions at the previous time level; i.e., (wn

i , v
n
i , an

i )

Output: solutions at the new time level; i.e., (wn+1
i , vn+1

i , an+1
i )

Procedures:
Stage I. compute a first-order prediction for displacement and velocity

∀xi ∈ Ωh :
{

w
p
i = wn

i + Δtvn
i + Δt2

2 (1 − 2β)an
i

v
p
i = vn

i + Δt (1 − γ )an
i

Stage II. solve a system of equations for acceleration at tn+1

∀xi ∈ Ωh :
(
ρh + βΔt2Kh + γΔtB

)
an+1
i = −Khw

p
i − Bhv

p
i + Fn+1

i

Stage III. solve for displacement and velocity at tn+1

compute wn+1
i and vn+1

i explicitly from (14)

Remark: In this paper, we set β = 1/4 and γ = 1/2. With this choice of parameters, the scheme is second-order
accurate and unconditionally stable. We also note that boundary conditions are applied after stages I and III to fill
in the solutions of w and v at ghost and/or boundary grid points. For stage II, equations for acceleration at ghost
and boundary nodes are replaced with boundary conditions.

4 Stability analysis and time-step determination

We study the stability of the schemes and use the analytical results to determine stable time steps in practical
computations. As is already pointed out in [38] that the implicit NB2 time-stepping scheme is unconditionally
stable, the focus of the stability analysis here is on the explicit PC22 scheme.

4.1 Stability of the PC22 scheme

Applying the PC22 scheme to the Dahlquist test equation η′ = λη leads to the characteristic polynomial for a
complex-valued amplification factor ζ . Letting z = λΔt , the roots of the characteristic equation are found to be

ζ(z) = 1

2

⎛
⎝1 + z + 3

4
z2 ±

√(
1 + z + 3

4
z2

)2

− z2

⎞
⎠ . (16)

The region of absolute stability for the PC22 time-stepping scheme is the set of complex values z for which the
roots of the characteristic polynomial satisfy |ζ(z)| ≤ 1.

The stability region can be used to find the time-step restriction for a typical problem. However, it is not
straightforward to obtain a stable time step by solving the inequality |ζ(z)| ≤ 1 directly from (16), so a half super-
ellipse is introduced as an approximation of the stability region. To be specific, we define the half super-ellipse by

∣∣∣∣Re(z)

a

∣∣∣∣
n

+
∣∣∣∣Im(z)

b

∣∣∣∣
n

≤ 1 and Re(z) ≤ 0, (17)
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Fig. 2 Regions of absolute
stability for the PC22
time-step scheme and the
scheme with an AB2
predictor only. The
approximated region of
stability using a half
super-ellipse is also
depicted in the plot. Here,
z = λΔt with λ being the
time-stepping eigenvalue
and Δt representing the
time step. Re(z) and Im(z)
represent the real and
imaginary parts of the
complex number z

where Re(z) and Im(z) denote the real and imaginary parts of z, respectively. We want the half super-ellipse to be
completely enclosed by the actual region of stability and to be as large as possible. Given a time-stepping eigenvalue
λ, it is much easier to find a sufficient condition for stability by requiring λΔt to be inside the approximated region
defined by (17). It is found that the above half super-ellipse makes a good approximation for the stability region of
the PC22 time-stepping scheme by setting a = 1.75, b = 1.2, and n = 1.5.

The region of absolute stability for the PC22 time-stepping scheme, together with the approximated region, is
shown in Fig. 2. For comparison purposes, we also plot the stability region for the scheme that only uses an AB2
predictor in the same figure. We can see that by including a corrector step, the PC22 scheme has a much larger
stability region than the predictor alone, and the stability region includes the imaginary axis so that the scheme can
be used for problems with no dissipations. From the plot, we can also see that the half super-ellipse that is chosen
to be an approximation fits perfectly inside the original stability region for the PC22 scheme.

4.2 Time-step determination

A strategy for the determination of stable time steps to be used in Algorithms 1 & 2 is outlined here. We first
transform the semi-discrete problem (10)–(12) into Fourier space, and then derive a stable time step by imposing
the condition that the product of the time step and any eigenvalue of the Fourier transformation of the difference
operators lies inside the stability region of a particular time-stepping method for all wave numbers.

For simplicity of presentation, we assume the plate resides on a unit square domain (Ω = [0, 1] × [0, 1]), and
the solution is 1-periodic in both x and y directions. Results on a more general domain can be readily obtained by
mapping the general domain to a unit square. After Fourier transforming the homogeneous version of Eqs. (10)–
(12) (i.e., assuming Fi(t) ≡ 0), an ODE system for the transformed variables (ŵ, v̂) is derived with ω = (ωx , ωy)

denoting any wavenumber pair,

[
ŵ(ω, t)
v̂(ω, t)

]
t
= Q̂(ω)

[
ŵ(ω, t)
v̂(ω, t)

]
, where Q̂(ω) =

[
0 1

−K̂(ω) −B̂(ω)

]
. (18)

Here, K̂ and B̂ are the Fourier transformations of the difference operators Kh/(ρh) and Bh/(ρh), respectively. Let
kωx = 2 sin(ωx hx/2)/hx and kωy = 2 sin(ωyhy/2)/hy , where hx and hy are the grid spacings in the corresponding
directions; then we have
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K̂(ω) = 1

ρh

[
K0 + T

(
k2
ωx

+ k2
ωy

)
+ D

(
k4
ωx

+ 2k2
ωx

k2
ωy

+ k4
ωy

)]
,

B̂(ω) = 1

ρh

[
K1 + T1

(
k2
ωx

+ k2
ωy

)]
.

Noting that both K̂ and B̂ are non-negative for any ω. In the analysis to follow, their maximum values denoted by
K̂M and B̂M are of interest, which are attained when ωx hx = nπ and ωyhy = mπ (n, m ∈ Z); namely,

K̂M = 1

ρh

⎡
⎣K0 + 4T

(
1

h2
x

+ 1

h2
y

)
+ 16D

(
1

h2
x

+ 1

h2
y

)2
⎤
⎦ , (19)

B̂M = 1

ρh

[
K1 + 4T1

(
1

h2
x

+ 1

h2
y

)]
. (20)

A numerical method is stable provided all the eigenvalues of Q̂(w)Δt lie within the stability region of the
time-stepping method. The eigenvalues of the coefficient matrix Q̂(w) for the problem (18) are

λ̂(ω) = − B̂(ω)

2
±
√√√√
(
B̂(ω)

2

)2

− K̂(ω). (21)

For stability analysis, it suffices to consider the eigenvalue with the largest possible magnitude denoted by λ̂M . To
find λ̂M , we consider the following situations.

Under-damped case If
(
B̂(ω)/2

)2 − K̂(ω) < 0, we obtain complex eigenvalues,

λ̂(ω) = − B̂(ω)

2
± i

√√√√K̂(ω) −
(
B̂(ω)

2

)2

.

In this case, we may define

λ̂M = − B̂M

2
± i

√√√√K̂M −
(
B̂M

2

)2

, (22)

since |λ̂(ω)| =
√
K̂(ω) ≤

√
K̂M = |λ̂M |. Here K̂M and B̂M are the maximum values of K̂(ω) and B̂(ω) that are

given by (19) and (20).

Over-damped case If
(
B̂(ω)/2

)2 − K̂(ω) > 0, the eigenvalues are real and are of the same form as (21). In this

case, we may define

λ̂M = −B̂M . (23)

This is because

|λ̂(ω)| ≤ B̂(ω)

2
+
√√√√
(
B̂(ω)

2

)2

− K̂(ω) ≤ B̂(ω) ≤ B̂M = |λ̂M |.

We note that λ̂M introduced in (22) and (23) represent the eigenvalues of the worst-case scenario for the under-
damped and over-damped cases, respectively. A sufficient condition that ensures stability for the PC22 scheme is
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found by letting z = λ̂MΔt lie in the approximated stability region that is defined by the half super-ellipse in (17).
Since the approximated stability region is a subset of the actual one, a time step that is sufficient to guarantee the
stability of Algorithm 1 can be chosen as following,

Δt = Csf

(∣∣∣∣∣
Re(λ̂M )

a

∣∣∣∣∣
n

+
∣∣∣∣∣
Im(λ̂M )

b

∣∣∣∣∣
n)−1/n

, (24)

where Csf ∈ (0, 1] is a stability factor (sf) that multiplies an estimate of the largest stable time step based on the
above analysis. Unless otherwise noted, we choose Csf = 0.9 for the PC22 scheme throughout this paper.

In terms of the NB2 scheme, we know that it is implicit in time and stable for any time step. However, for
accuracy reasons, we choose its time step based on the condition for the explicit PC22 time-stepping scheme (24),
but with a much larger stability factor. Typically, we choose Csf = 90 for Algorithm 2.

5 Numerical results

We now present the results for a series of test problems to demonstrate the properties and applications of our
numerical approaches. Mesh refinement studies using problems with known exact solutions are first considered to
verify the stability and accuracy of the schemes. Free and forced vibrations of thin plates with various geometrical
and physical configurations are then solved to further demonstrate the numerical properties of our schemes and
to compare with existing results. In particular, the simulation of one test problem is cross-validated with reported
experimental results. As an application, we illustrate a strategy using our numerical methods, together with fast
Fourier transformation (FFT), to identify the natural frequencies of a plate, and then numerically investigate the
interesting physical phenomena known as resonance and beat.

5.1 Method of manufactured solutions

As a first test, we verify the accuracy and stability of the algorithms using the method of manufactured solutions
by adding forcing functions to the PDE (1) and the boundary conditions (2)–(4) so that a chosen function becomes
an exact solution. The exact solution is chosen to be

we(x, y, t) = sin4 (π(x + 1)) sin4 (π(y + 1)) cos(2π t). (25)

In order to validate the algorithms on both Cartesian and curvilinear grids, we consider a square plate (ΩS =
[−1, 1]× [−1, 1]) and an annular plate (ΩA = {x : 0.5 ≤ |x| ≤ 1}). Physical parameters of the governing equation
are specified as ρh = 1, K0 = 2, T = 1, D = 0.01, K1 = 5, T1 = 0.1, and ν = 0.1 for this test.

Given initial conditions from the exact solution at t = 0, we solve the test problem to t = 1 on a sequence of
refined grids GN , where N = 10 × 2 j represents the number of grid points in each axial direction with j ranging
from 0 through 4. All the boundary conditions listed in (2)–(4) as well as both of the proposed schemes (i.e., PC22
and NB2) are considered, but we selectively present two of the numerical solutions obtained on the finest considered
grid (i.e., G160) in Fig. 3. In particular, the solution presented for the square plate is solved using the PC22 scheme
subject to the free boundary conditions, while the plot for the annular plate is generated from the NB2 scheme with
simply supported boundary conditions. We note that numerical solutions for the other cases are similar, since the
test problem is designed to have the same exact solution (25).

Let E(w) = |wi(t) − we(xi, t)| denote the error function of a numerical solution wi(t), and we show in Fig. 4
the contour plots of E(w) on G160 to demonstrate the accuracy of our schemes for all the boundary conditions.
Results shown for the square plate are obtained using the PC22 scheme, and those for the annular plate are solved
with the NB2 scheme. We observe that the numerical solutions subject to all the boundary conditions are accurate
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Fig. 3 Contour plots of the computed displacement w on grid G160 when t = 1. The solution presented for the square plate is solved
using the PC22 scheme subject to the free boundary conditions, while the plot for the annular plate is generated from the NB2 scheme
with simply supported boundary conditions. Results obtained using either algorithm are similar regardless of the boundary conditions

Fig. 4 Contour plots showing the errors of the numerical solutions for the displacement w with various boundary conditions when
t = 1. Results shown here are obtained on grid G160 using the PC22 method for the square plate and the NB2 method for the annular
plate

in the sense that the errors are small and smooth throughout the domain including the boundaries. Errors for all the
other cases behave similarly, so their plots are omitted here to save space.

Convergence studies for both the square and annular plates subject to all the boundary conditions are performed
for the numerical results obtained on the sequence of gridsGN’s using both numerical methods. We plot the maximum
norm errors ||E(w)||∞ against the grid size together with a second-order reference curve in log–log scale to reveal
the order of accuracy. In the top row of Fig. 5, we show the results for the square plate, and in the bottom row of the
same figure, we show the results for the annular plate. For all the boundary conditions and both of the numerical
schemes, we observe the expected second-order accuracy regardless of the plate shape.
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Fig. 5 Convergence rates of w for both the square (ΩS) and the annular (ΩA) plates subject to all the boundary conditions are presented.
The upper panel of plots shows the results of the square plate, and the lower panel illustrates the results of the annular plate. The errors
for both numerical methods (PC22 and NB2) are computed at t = 1 and measured in the maximum norm

5.2 Vibration of plates

Mechanical vibrations are problems of great interest in engineering and material sciences. For a thin plate-like
structure, a 2D plate theory is capable of giving an excellent approximation to the actual 3D motion. The vibration
of a plate can be caused either by displacing the plate from its stress-free state or by exerting an external forcing,
where the former is referred to as free vibration and the latter is called forced vibration. Among the numerous plate
models, the Kirchhoff–Love theory is most commonly used. To further validate the numerical properties of the
proposed schemes, we consider the vibration problems of the generalized Kirchhoff–Love plate (1), which include
the study of natural frequencies and mode shapes of vibration, and propagating or standing waves in the plate.

5.2.1 Vibration with known analytical solutions

The classical Kirchhoff–Love plate with some simple specifications can be solved analytically. We consider a thin
plate on a rectangular domain (i.e., Ω = [0, L]×[0, H ]). Analytical solutions to the classical Kirchhoff–Love plate
equation subject to simply supported boundary conditions (3) are available for both the free and forced vibration
cases. We solve each case numerically and compare our approximations with the analytical solutions to reveal the
stability and accuracy of our schemes.

• Free vibration Consider the free vibration case; i.e., the forcing function in (1) is zero (F(x, t) ≡ 0). In this
case, the governing equation can be analytically solved using separation of variables or Fourier transformation.
Let Amn and Bmn denote the coefficients to be determined by the initial conditions and the orthogonality of
Fourier components, then the general solution to this simple plate can be expressed as the following infinite
series:
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w(x, t) =
∞∑

m=1

∞∑
n=1

sin
mπx

L
sin

nπy

H
(Amn cos ωmnt + Bmn sin ωmnt), (26)

where the natural frequencies of vibration for this plate is found to be

ωmn = π2
(

m2

L2 + n2

H2

)√
D

ρh
. (27)

Standing wave test problems can be constructed by specifying modes of vibration as the given functions for the
initial conditions (5), namely,

w0(x) = sin
mπx

L
sin

nπy

H
, and v0(x) = 0. (28)

Enforcing the above initial conditions on the general solution (26), we deduce the exact standing wave solution for
each 2-tuple (m, n),

we(x, t) = sin
mπx

L
sin

nπy

H
cos ωmnt. (29)

We solve the standing wave test problem for a few modes to validate our numerical schemes. That is to say, we
specify the initial conditions (28) with various values of (m, n), and compare the numerical approximations with
the exact solution (29). For simplicity, the rectangular domain is restricted to a unit square in the computations;
namely, we set L = H = 1 in Ω = [0, L] × [0, H ]. The parameters for this test are specified as ρh = 2.7,
K0 = 0, T = 0, D = 6.4527, K1 = 0, T1 = 0 and ν = 0.33. Note that this is a classical Kirchhoff–Love model
because only the bending dynamics is accounted for (namely, D �= 0). Both of the proposed schemes are used
to conduct numerical simulations, but only the results of the PC22 scheme are presented in Fig. 6 since the other
scheme produces comparable results. In Fig. 6, we show the contour plots of the displacement w at t = 1 for a few
(m, n)-tuples. In the plots, we also show the zero contours, which represent the nodal lines of the standing wave
solutions. It is clear that the patterns of these nodal lines exhibited in the numerical solutions resemble those of the
corresponding modes of vibration used in the initial conditions (28).

Given that the exact solutions for these standing waves are available in (29), it is possible for us to perform
mesh refinement studies to show the accuracy and the convergence of the numerical solutions. In Fig. 7, we present
more results for the case with m = 1 and n = 2, which include the error of w at t = 1 plotted in the left image,
the convergence rate of w shown in the middle image, and the evolution of w at a probed location depicted in the
right image. The probed location is xp = (0.2, 0.1), which is marked by a cross symbol in Fig. 6b. The error and
convergence rate plots confirm that the scheme is accurate and the rate of convergence is second order.

The evolution of w at a point, as the one shown in the right image of Fig. 7, demonstrates how the standing wave
solutions oscillate in time. From the evolution curve, we can estimate the frequency of oscillation by measuring
the number of cycles per unit time, which should match up with the natural frequency of the plate. As another
indication of the accuracy of our proposed schemes, we compare the numerically estimated frequencies with the
natural frequencies. Please note that the natural frequencies defined in (27) are actually angular frequencies that
measure the number of oscillations in 2π units of time. For comparison, we use the ordinary frequency (measured
in hertz) that is given by fmn = ωmn/(2π). We track the evolution of the displacement at xp = (0.2, 0.1) for
the modes that correspond to the first 9 natural frequencies, and estimate the frequencies of oscillation from the
evolution curves. The frequencies inferred from the numerical solutions on grid G160 are summarized in Table 1. We
can see that, for both numerical methods, the discrepancies between the estimated frequencies and fmn are small
for all the examined cases.
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Fig. 6 Standing wave solutions with the nodal lines at time t = 1 for some (m, n) values. Simulations are performed using the PC22
scheme on grid G160. Results obtained using NB2 scheme are similar

Fig. 7 More results for the case with m = 1, n = 2. Left: the error plot of the displacement w at t = 1. Middle: the convergence rate
of w. Right: displacement at point xp; the probed location is marked by a cross symbol in Fig. 6b

• Forced vibration Now, we consider the vibration of the classical Kirchhoff–Love plate driven by a time-
dependent sinusoidal force F(x, t) = F0 sin(ξ t), where F0 and ξ are constants for the magnitude and frequency
of the sinusoidal force. The plate is assumed to be undeformed and at rest initially; that is, w0 = v0 = 0. Using
method of eigenfunction expansion, we find the exact solution to the forced vibration problem,

w(x, y, t) =
∞∑

m=1

∞∑
n=1

sin
mπx

L
sin

nπy

H
Tmn(t), (30)
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Table 1 Comparison between the frequencies estimated from the numerical solutions on grid G160 and the first 9 natural frequencies

(m, n) fmn PC22 scheme NB2 scheme

frequency (est.) Error (%) frequency (est.) Error (%)

(1, 1) 4.8567 4.8565 0.0037 4.8541 0.0540

(1, 2) 12.1417 12.1403 0.0112 12.1359 0.0480

(2, 2) 19.4267 19.4242 0.0130 19.4203 0.0331

(1, 3) 24.2834 24.2769 0.0268 24.2691 0.0589

(2, 3) 31.5684 31.5608 0.0239 31.5544 0.0443

(1, 4) 41.2817 41.2617 0.0485 41.2344 0.1146

(3, 3) 43.7100 43.6975 0.0286 43.6542 0.1277

(2, 4) 48.5667 48.5455 0.0436 48.4883 0.1615

(3, 4) 60.7084 60.6821 0.0434 60.5840 0.2048

Discrepancies are measured using the percentage of the relative errors

Fig. 8 Contour plots of the numerical solution (left) and the error (right) of w at t = 1. Results are obtained using the NB2 scheme on
a uniform Cartesian grid with grid spacings hx = hy = 1/300

where the time-dependent coefficient Tmn(t) is given by

Tmn(t) = 2F0 (1 − cos(mπ)) (1 − cos(nπ))

ρhmnπ2ωmn

(
sin(ξ t) + sin(ωmnt)

ξ + ωmn
− sin(ξ t) − sin(ωmnt)

ξ − ωmn

)
.

For a numerical test, we consider a classical Kirchhoff–Love plate with the parameters specified as ρh = 1,
K0 = 0, T = 0, D = 0.1, K1 = 0, T1 = 0, and ν = 0.3 on a rectangular domain Ω = [0, 0.4] × [0, 0.2]; namely
L = 0.4 and H = 0.2. The magnitude and frequency of the driving force are set as F0 = 1000 and λ = 40.
This test problem is solved using both of the proposed schemes on a uniform Cartesian grid with grid spacings
hx = hy = 1/300. The numerical results are compared with an analytical solution truncated from the exact solution
(30) by keeping 49 modes (i.e., m = 1, . . . , 7 and n = 1, . . . , 7).

Both schemes perform comparably well and produce similar solutions, so we only show the one obtained with
the NB2 schemes here. In Fig. 8, the contour plots of the numerical solution of w at t = 1 and the error compared
with the truncated exact solution are presented. To show the accuracy of the numerical results over time, we track
the displacement w, as well the velocity v, at the point xp = (0.2, 0.1). The time evolution of the numerical
displacement and velocity at xp are plotted on top of the referenced analytical solutions in Fig. 9; it is easily seen
that our numerical results agree well with the analytical solution over time.

5.2.2 Vibration of the generalized Kirchhoff–Love plate

For the generalized Kirchhoff–Love model (1) that cannot be solved analytically, we numerically solve the
frequency-domain eigenvalue problem to identify the natural frequencies and modes of vibration for the plate,
and then utilize the computed eigenvalues and eigenvectors to construct standing wave solutions. The nodal line
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Fig. 9 The displacement and velocity of the plate at point xp = (0.2, 0.1). Simulation is performed using the NB2 scheme on a uniform
Cartesian grid with grid spacings hx = hy = 1/300

patterns (i.e., Chladni figures) of the standing wave solutions obtained from our numerical simulations are compared
against those solved from the eigenvalue problem for the validation of the numerical schemes.

Specifically, a square plate (ΩS = [0, 0.25] × [0, 0.25]) and an annulus plate (ΩA = {x : 0.1 ≤ |x| ≤ 0.5}) are
considered. For both plates, we assume the same parameters, ρh = 1, K0 = 2, T = 1, D = 0.5, K1 = 0, T1 = 0,
and ν = 0.1, noting that these parameters specify an undamped plate. On the edges of the plates, we impose the
clamped boundary conditions (2) for square plate, and the simply supported boundary conditions (3) for the annular
plate.

First, let us consider the eigenvalue problem for the undamped plate on mesh Ωh ,

Khφi = λφi, xi ∈ Ωh, (31)

where φi = φ(xi) is the mode function (or eigenfunction) for the eigenvalue λ. The definition of the difference
operator Kh is given in (13). To get the eigenfunction-eigenvalue pairs (φn(x), λn), we numerically solve the
eigenvalue problem (31) subject to the appropriate numerical boundary conditions; that is, clamped (7) for the
square plate and supported (8) for the annular plate. The eigs function in MATLAB is used here. To save space,
we put the results in Appendix A, where the nodal lines of the first 25 eigenmodes (with multiplicity) for the plates
(square and annular) are presented in Figs. 18 and 19. Note that, following the tradition in structural engineering,
the values of natural frequencies, rather than the eigenvalues, are reported in the plots. The natural frequency
corresponding to λn is given by

fn = 1

2π

√
λn

ρh
.

Next, we solve for standing waves in the generalized Kirchhoff–Love model (1) with the aforementioned param-
eters and boundary conditions numerically using the NB2 scheme. Same as before, standing wave test problems are
generated by assigning the initial conditions with the eigenmodes, w0(x) = φn(x) and v0(x) = 0, and then let
the plate vibrate freely (i.e., zero external forcing). Results for the square and annular plates are respectively shown
in Figs. 10 and 11; three modes for each plate are selected for presentation. Nodal lines of the numerical solutions
are also plotted on top of the contour images. The fact that the nodal line patterns obtained from snapshots (at t = 1)
of the numerical solutions to the dynamical PDE (1) clearly match those solved from the eigenvalue problem (31)
(shown in Figs. 18 and 19 in Appendix A) is a strong evidence indicating the accuracy of our numerical methods.
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Fig. 10 Standing waves in the square plate with clamped edges at time t = 1 for three eigenvalue cases. Zero contour lines of the
solutions are also plotted to indicate the nodal line patterns. Simulations are performed using the NB2 scheme on grid G80

Fig. 11 Standing waves in the annular plate with simply supported edges at time t = 1 for three eigenvalue cases. Zero contour lines
of the solutions are also plotted to indicate the nodal line patterns. Simulations are performed using the NB2 scheme on grid G80

5.2.3 Cross-validation with experiments

As a final test, we compare our numerical results with existing experimental results. In [46], Tuan et al. experimentally
measured the Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically
controlled mechanical oscillator. For one of their reported experiments, a thin square plate with a length of L =
0.24 m and a thickness of h = 0.001 m was used. The plate was made of aluminum sheet that has the following
material parameters: E = 69 GPa, ρ = 2700 kg/m3, and ν = 0.33. The center of the plate was fixed with a screw
supporter that can be driven with an electronically controlled mechanical oscillator. Silica sands with grain size of
0.3 mm were placed on the top surface of the plate. When the oscillator drove the plate to vibrate at a resonant
(natural) frequency, the sand particles stopped at the nodes of the resonant modes and, therefore, manifested the
nodal line patterns for the vibrating plate. For convenient comparison in this paper, we make a permitted reproduction
of the experimental nodal line patterns at the resonance frequencies in Fig. 12.

For this test, we attempt to simulate the experiment and reconstruct comparable nodal line patterns numerically.
To mimic the experiment, we consider the Kirchhoff–Love plate (1) on the square domain, Ω = [0, 0.24]×[0, 0.24].
The edges of the plate are assumed to move freely, so the free boundary conditions (4) are applied, and the center of
the plate is fixed, i.e., w(xc, t) = 0. The parameters of the governing equation are chosen to represent the material
properties of the aluminum sheet; specifically, we set ρh = 2.7, K0 = 0, T = 0, D = 6.4527, K1 = 0, T1 = 0,
and ν = 0.33. The plate is assumed to be at rest and undeformed at t = 0; that is, we have w0 = v0 = 0 for the
initial conditions (5).

To account for the driving force exerted by the mechanical oscillator used in the experiment, we specify the
external forcing of the model as a time-dependent sinusoidal function that is none-zero on a small square area A at
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Fig. 12 Experimental nodal line patterns at the resonant frequencies fi . Figure reprinted from [46] with permission from the publisher

Fig. 13 Contour plots of the displacement and the nodal lines (i.e., zero contours) at t = 1 for three typical resonant frequencies. The
results shown here are obtained from the simulation of the NB2 scheme on grid G160

the center (xc, yc) of the plate,

F(x, t) =
{

F0 cos ξ t, x ∈ A,

0, x /∈ A,
(32)

where F0 and ξ are the magnitude and the angular frequency of the driving force, and the square area is A =
[xc − 0.01, xc + 0.01] × [yc − 0.01, yc + 0.01].

To reconstruct the nodal line patterns numerically, we need the driving force (32) to oscillate at a resonant (natural)
frequency. So we first solve the eigenvalue problem (31) using the eigs function in MATLAB to find the natural
frequencies for the model plate. The relation between the kth resonance angular frequency and the corresponding
eigenvalue is ξk = √

λk/(ρh). We choose the magnitude of the force to be F0 = 1010 and perform the simulations
using the NB2 scheme on grid G160. The reason why such a large magnitude is used for the driving force is that we
hope to quickly force the plate to vibrate in the resonant mode.

The results obtained from the simulations using the NB2 scheme on grid G160 are presented in Fig. 13, which
include contour plots of the displacement and the nodal lines at t = 1 for three typical resonant frequencies. In order
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to directly compare with the regular frequencies reported in the experiment, we also report in Fig. 13 the regular
frequencies that are converted from the angular frequencies by fk = ξk/2π . The nodal line patterns manifested in
our numerical results are in excellent agreement to the experimental results shown in Fig. 12 for all the frequencies
(except for the degenerate eigenvalues).

It is worth pointing out that there are noticeable discrepancies between the values of the numerical and experimen-
tal resonant frequencies. This is because the plate model we used for this test is a simple classical Kirchhoff–Love
plate that does not consider the influences of the ambient air and the extra mass of the sand particles on the plate. We
could improve the model by tuning the various parameters and the external forcing in (1) so as to incorporate these
ignored influences; however, the modeling issues about a particular plate are beyond the scope of this study. The
purpose of this test is to validate our numerical methods, and the fact that the numerically reconstructed resonant
nodal line patterns agree well with the experimental ones and the values of resonant frequencies are in qualitative
agreement serves that purpose.

5.3 Application

As an application of our schemes, we numerically explore the interesting physical phenomena known as resonance
and beat that occur when the driving frequency is right at or close to a natural frequency. Here, we demonstrate the
application by considering an annular plate (Ω = {x : 0.1 ≤ |x| ≤ 0.5}) with no external forcing as an example. The
plate satisfies the generalized Kirchhoff–Love equation (1) and is driven to vibrate by the following time-dependent
clamped boundary conditions that prescribe the displacement of the inner edge; i.e.,

w(x, t) = Win cos ξ t,
∂w

∂n
(x, t) = 0 for |x| = 0.1, (33)

where Win and ξ are the maximum value (amplitude) and angular frequency of the prescribed boundary displacement,
respectively. For this example, we set Win = 1 and vary ξ to investigate its effects. The outer edge of the plate
is allowed to move freely; namely, the free boundary conditions (4) are applied at |x| = 0.5. Initially, we assume
w0(x, 0) = v0(x, 0) = 0. The setup of this problem can easily be replicated experimentally by clamping the inner
edge of an annular plate to a mechanical oscillator undergoing a sinusoidal motion. The material parameters of the
plate are ρh = 1, D = 0.01, T = 0, K0 = 0, and ν = 0.3. With the intention to study the effects of the damping
terms in the equation, various values for K1 and T1 are considered below.

To begin with, we consider the undamped case (i.e., K1 = T1 = 0), and specify a value to ξ in (33) that is
either close to or at a natural frequency of the plate. Due to the complexity of the generalized plate equation and the
time-dependent boundary conditions, it is non-trivial to analytically find the frequency-domain eigenvalue problem
and then solve it for the natural frequencies and modes as were done in Sect. 5.2. Following a procedure proposed in
[47], we illustrate a more general strategy to identify the natural frequencies of a plate using our numerical methods
in conjunction with a fast Fourier transformation (FFT) power spectrum analysis of the numerical data.

The strategy for finding a natural frequency goes as following. We first simulate the problem for an arbitrary
driving frequency; say, ξ = 2π (or fd = 1 Hz), and trace the response of the plate at xp = (−0.2, 0). The
simulation runs until t = 30 using the NB2 scheme on grid G80. The left image of Fig. 14 shows the displacement
response at the selected location over time. We then perform FFT to the displacement data using the fft function
in MATLAB and present its power spectrum in the right image of Fig. 14. From this graph, we are able to identify
two natural frequencies ( f1 = 0.367, f2 = 2.067) and the driving frequency ( fd = 1). More natural frequencies
can be identified this way by sampling different values for the driving frequency ξ .

Resonance occurs when the driving frequency of the plate is at a natural frequency. As an example, we simulate
this phenomenon at the natural frequency f2 by setting the driving frequency as ξ2 = 2π f2. The simulation is
carried out using the NB2 scheme until t = 30, and the results are collected in Fig. 15. In particular, we show
in Fig. 15a the contour plot of w as well as its nodal lines at t = 30. The nodal line pattern sheds light on the
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Fig. 14 Vibration of the plate when the driving frequency is ξ = 2π (or fd = 1 Hz). The simulation runs until t = 30 using the NB2
scheme on grid G80. Left: the displacement response at the selected location xp = (−0.2, 0) over time. Right: the FFT power spectrum
of the displacement response

Fig. 15 Numerical simulation of the resonance phenomenon using the NB2 method on grid G80. Here, the driving frequency is
ξ2 = 2π f2 and the probed location is xp = (−0.2, 0)

Fig. 16 Numerical simulation of the beat phenomenon using the NB2 method on grid G80. Here, the driving frequency is ξb = 4π (or
fb = 2 Hz) that is close to the natural frequency 2π f2 and the probed location is xp = (−0.2, 0)

mode shape (eigenfunction) associated with the natural frequency f2. We also trace the displacement at the point
xp = (−0.2, 0) and depict its time history in Fig. 15b. The resonance phenomenon is clearly observed as the
amplitude of the vibration increases over time. The FFT power spectrum of the displacement data at this point, as
is shown in Fig. 15c, also confirms that the plate vibrates at a frequency consistent with the natural frequency f2.
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Fig. 17 Plot of w(xp, t) vs. t for three different damping scenarios. Simulations are carried out using the NB2 scheme on grid G80.
Here, the driving frequency is the same as the resonant frequency ξ2 = 2π f2 and xp = (−0.2, 0)

To simulate beat, we drive the plate at a frequency that is very close to the previously found natural frequency
f2. Therefore, we set the driving frequency in (33) as the so-call beat frequency ξb = 4π (or fb = 2 Hz), noting
that the difference between the beat frequency and the natural frequency f2 is small for | fb − f2| = 0.067. Again,
the simulation is performed using the NB2 scheme until t = 30, and a similar collection of results are presented in
Fig. 16. The nodal line pattern for this case (Fig. 16a) is in accordance with that shown in Fig. 15a. Furthermore,
Fig. 16b shows the expected oscillation pattern that resembles the beat phenomenon. The FFT power spectrum of
the displacement data at xp, as is shown in Fig. 16c, clearly shows the two adjacent frequencies that correspond
respectively to the beat frequency fb and the natural frequency f2.

Now, we consider the effects of the damping terms in the generalized Kirchhoff–Love plate (1), which are the
linear damping term with coefficient K1 and the visco-elastic damping term with coefficient T1. The visco-elastic
damping tends to smooth high-frequency oscillations in space and is often added to model vascular structures in
haemodynamics. For the simulation, we use the same numerical setup as the resonance example and demonstrate
the damping effects by tracking the displacement over time at the point xp = (−0.2, 0) for three combinations of K1

and T1 values. The time history of the displacements is shown in Fig. 17. For the case when only the linear damping
term (K1 = 5, T1 = 0) is added, we can see from the plot that the amplitude of the oscillation is damped down
to around 2 when compared with the undamped resonance case. If we zoom in the plot at early times, we do see
some high-frequency oscillations. However, when the visco-elastic damping term is included (K1 = 0, T1 = 0.1),
we can no longer see the high-frequency oscillations in the zoomed plot; therefore, this term serves to smooth the
wave as expected.
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Similar numerical results can also be obtained using the PC22 method, although all the simulations are conducted
with the NB2 scheme in this section. It is important to remark that the examples considered here also showcase
the accuracy and efficiency of our numerical methods. The fact that we are able to simulate the resonance and beat
phenomena using a numerically found natural frequency and that the numerically observed resonance frequency
further corroborates that value strongly suggests the accuracy of our computations.

6 Conclusions

The novelty of the this paper lies in the development of two numerical algorithms, referred to as the PC22 and the
NB2 schemes, for the solution of a generalized Kirchhoff–Love plate model. The proposed schemes are based on
the common spatial discretization using centered finite-difference methods of second-order accuracy in conjunction
with either an explicit predictor-corrector scheme or an implicit Newmark-Beta scheme. The explicit predictor–
corrector time-stepping scheme consists of a second-order Adams–Bashforth (AB2) predictor and a second-order
Adams–Moulton (AM2) corrector (PC22), while the implicit time-stepping scheme takes advantage of a second-
order accurate version of the Newmark-Beta schemes (NB2). One of the main advantages of our algorithms is that
they solve the strong formulation of the governing equation (1) directly without the need of any reformulation or
working with sophisticated non-standard finite elements. Another contribution of this paper is the derivation of the
specific formula for determining a stable time step Δt given in (24) that can be used conveniently in the actual
computation.

Carefully designed test problems are solved to demonstrate the properties and applications of our numerical
approaches. The stability and accuracy of the schemes are verified by mesh refinement studies using problems with
known exact solutions and by cross-validation with experimental results. An interesting application concerning the
exploration of the resonance and beat phenomena of an annular plate with general configurations is considered to
further display the accuracy and efficiency of the numerical methods.

The domains of all the examples considered in this paper are restricted to simple ones that can be discretized
with a single Cartesian or curvilinear mesh. We would like to extend the schemes for more general geometries
using composite overlapping grids [48]. According to previous studies for wave-like equations on overlapping grids
[35], we expect weak instabilities to occur near the interpolation points of the overlapping grids. Therefore, the
investigation of novel methods, such as adding high-order spatial dissipation and upwind schemes, to suppress
possible instabilities that can be generated from the overlapping grid interpolation would be interesting topics for
future research.
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Appendix A: Nodal line patterns for the eigenvalue problem

We show the results of the eigenvalue problem (31) here. Nodal lines of the first 25 eigenmodes (with multiplicity)
for the square plate with clamped edges and the annular plate with simply supported boundaries are shown in Figs. 18
and 19, respectively. The eigenmodes plotted for each degenerated pair are arbitrary so they can be asymmetric.
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Fig. 18 Nodal lines of the first 25 eigenmodes (with multiplicity) of the clamped square plate. There are 6 degenerate pairs of
eigenmodes, so that only 19 distinct normalized eigenvalues are represented. Values reported in the plots are the natural frequencies in
increasing order
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Fig. 19 Nodal lines of the first 25 eigenmodes (with multiplicity) of the simply supported annular plate. There are 11 degenerate pairs
of eigenmodes, so that only 14 distinct eigenvalues are represented. Values reported in the plots are the natural frequencies in increasing
order
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